Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 59(8): 1724-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27075449

RESUMO

AIMS/HYPOTHESIS: Regular exercise is at the cornerstone of care in type 1 diabetes. However, relative hyperinsulinaemia and a blunted glucagon response to exercise promote hypoglycaemia. Recently, a selective antagonist of somatostatin receptor 2, PRL-2903, was shown to improve glucagon counterregulation to hypoglycaemia in resting streptozotocin-induced diabetic rats. The aim of this study was to test the efficacy of PRL-2903 in enhancing glucagon counterregulation during repeated hyperinsulinaemic exercise. METHODS: Diabetic rats performed daily exercise for 1 week and were then exposed to saline (154 mmol/l NaCl) or PRL-2903, 10 mg/kg, before hyperinsulinaemic exercise on two separate occasions spaced 1 day apart. In the following week, animals crossed over to the alternate treatment for a third hyperinsulinaemic exercise protocol. RESULTS: Liver glycogen content was lower in diabetic rats compared with control rats, despite daily insulin therapy (p < 0.05). Glucagon levels failed to increase during exercise with saline but increased three-to-six fold with PRL-2903 (all p < 0.05). Glucose concentrations tended to be higher during exercise and early recovery with PRL-2903 on both days of treatment; this difference did not achieve statistical significance (p > 0.05). CONCLUSIONS/INTERPRETATION: PRL-2903 improves glucagon counterregulation during exercise. However, liver glycogen stores or other factors limit the prevention of exercise-induced hypoglycaemia in rats with streptozotocin-induced diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glucagon/metabolismo , Hipoglicemia/tratamento farmacológico , Hipoglicemia/etiologia , Condicionamento Físico Animal/fisiologia , Receptores de Somatostatina/antagonistas & inibidores , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Modelos Animais de Doenças , Glucose/metabolismo , Insulina/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Peptídeos Cíclicos/uso terapêutico , Ratos , Ratos Sprague-Dawley
2.
J Appl Physiol (1985) ; 118(11): 1331-43, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792713

RESUMO

Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic ß-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED (P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD.


Assuntos
Comportamento Animal , Glicemia/metabolismo , Corticosterona , Diabetes Mellitus Experimental/prevenção & controle , Dieta Hiperlipídica , Glucocorticoides , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Esforço Físico , Volição , Adiposidade , Animais , Biomarcadores/sangue , Peso Corporal , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/psicologia , Metabolismo Energético , Homeostase , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/fisiopatologia , Ilhotas Pancreáticas/fisiopatologia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Ratos Sprague-Dawley , Corrida , Fatores de Tempo
3.
Metabolism ; 60(11): 1500-10, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21864867

RESUMO

Glucocorticoids (GCs) have long been accepted as being catabolic in nature, liberating energy substrates during times of stress to supply the increased metabolic demand of the body. The effects of GCs on adipose tissue metabolism are conflicting, however, because patients with elevated GCs present with central adiposity. We performed an extensive literature review of the effects of GCs on adipose tissue metabolism. The contradictory effects of GCs on lipid metabolism occur through a number of different mechanisms, some of which are well defined and others remain to be elucidated. Firstly, through increases in caloric and dietary fat intake, along with increased hydrolysis of circulating triglycerides (chylomicrons, very low-density lipoproteins) by lipoprotein lipase activity, GCs increase the amount of fatty acids in circulation, which are then available for ectopic fat distribution (liver, muscle, and central adipocytes). Glucocorticoids also increase de novo lipid production in hepatocytes through increased expression of fatty acid synthase. There is some controversy as to whether these same mechanisms occur in adipocytes, thereby contributing to adipose hypertrophy. Glucocorticoids promote preadipocyte conversion to mature adipocytes, causing hyperplasia of the adipose tissue. Glucocorticoids also have acute antilipolytic effect on adipocytes, whereas their genomic actions facilitate increased lipolysis after about 48 hours of exposure. The acute and long-term effects of GCs on adipose tissue lipolysis remain unclear. Although considerable evidence supports the notion that GCs increase lipolysis through glucocorticoid-induced increases of lipase expression, they clearly have antilipolytic effects within these same tissues and cell line models.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Glucocorticoides/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Modelos Biológicos , Obesidade/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia
4.
Am J Physiol Cell Physiol ; 300(1): C198-209, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20943959

RESUMO

Glucocorticoids have been proposed to be both adipogenic and lipolytic in action within adipose tissue, although it is unknown whether these actions can occur simultaneously. Here we investigate both the in vitro and in vivo effects of corticosterone (Cort) on adipose tissue metabolism. Cort increased 3T3-L1 preadipocyte differentiation in a concentration-dependent manner, but did not increase lipogenesis in adipocytes. Cort increased lipolysis within adipocytes in a concentration-dependent manner (maximum effect at 1-10 µM). Surprisingly, removal of Cort further increased lipolytic rates (∼320% above control, P < 0.05), indicating a residual effect on basal lipolysis. mRNA and protein expression of adipose triglyceride lipase and phosphorylated status of hormone sensitive lipase (Ser563/Ser660) were increased with 48 h of Cort treatment. To test these responses in vivo, Sprague-Dawley rats were subcutaneously implanted with wax pellets with/without Cort (300 mg). After 10 days, adipose depots were removed and cultured ex vivo. Both free fatty acids and glycerol concentrations were elevated in fed and fasting conditions in Cort-treated rats. Despite increased lipolysis, Cort rats had more visceral adiposity than sham rats (10.2 vs. 6.9 g/kg body wt, P < 0.05). Visceral adipocytes from Cort rats were smaller and more numerous than those in sham rats, suggesting that adipogenesis occurred through preadipocyte differentiation rather than adipocyte hypertrophy. Visceral, but not subcutaneous, adipocyte cultures from Cort-treated rats displayed a 1.5-fold increase in basal lipolytic rates compared with sham rats (P < 0.05). Taken together, our findings demonstrate that chronic glucocorticoid exposure stimulates both lipolysis and adipogenesis in visceral adipose tissue but favors adipogenesis primarily through preadipocyte differentiation.


Assuntos
Adipogenia/efeitos dos fármacos , Corticosterona/administração & dosagem , Corticosterona/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Implantes de Medicamento , Epinefrina/farmacologia , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...